The S28H mutation on mNeptune generates a brighter near-infrared monomeric fluorescent protein with improved quantum yield and pH-stability.

نویسندگان

  • Zhao-Yang Li
  • Dian-Bing Wang
  • Zhi-Ping Zhang
  • Li-Jun Bi
  • Zong-Qiang Cui
  • Jiao-Yu Deng
  • Xian-En Zhang
چکیده

For living deep-tissue imaging, the optical window favorable for light penetration is in near-infrared wavelengths, which requires fluorescent proteins with emission spectra in the near-infrared region. Here, we report that a single mutant Ser28His of mNeptune with a near-infrared (≥650 nm) emission maxima of 652 nm is found to improve the brightness, photostability, and pH stability when compared with its parental protein mNeptune, while it remains as a monomer, demonstrating that there is still plenty of room to improve the performance of the existing near infrared fluorescence proteins by directed evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Single T65S Mutation Generates Brighter Cyan Fluorescent Proteins with Increased Photostability and pH Insensitivity

Cyan fluorescent proteins (CFP) derived from Aequorea victoria GFP, carrying a tryptophan-based chromophore, are widely used as FRET donors in live cell fluorescence imaging experiments. Recently, several CFP variants with near-ultimate photophysical performances were obtained through a mix of site-directed and large scale random mutagenesis. To understand the structural bases of these improvem...

متن کامل

Mutagenesis of mNeptune Red-Shifts Emission Spectrum to 681-685 nm

GFP-like fluorescent proteins with diverse emission wavelengths have been developed through mutagenesis, offering many possible choices in cellular and tissue imaging, such as multi-targets imaging, deep tissue imaging that require longer emission wavelength. Here, we utilized a combined approach of random mutation and structure-based rational design to develop new NIR fluorescent proteins on t...

متن کامل

Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%

Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurquoise, the latter exhibiting a high-fluorescence quantum yield and a long mono-exponential fluores...

متن کامل

Far-red fluorescent tags for protein imaging in living tissues.

A vast colour palette of monomeric fluorescent proteins has been developed to investigate protein localization, motility and interactions. However, low brightness has remained a problem in far-red variants, which hampers multicolour labelling and whole-body imaging techniques. In the present paper, we report mKate2, a monomeric far-red fluorescent protein that is almost 3-fold brighter than the...

متن کامل

An improved monomeric infrared fluorescent protein for neuronal and tumor brain imaging

Infrared fluorescent proteins (IFPs) are ideal for in vivo imaging, and monomeric versions of these proteins can be advantageous as protein tags or for sensor development. In contrast to GFP, which requires only molecular oxygen for chromophore maturation, phytochrome-derived IFPs incorporate biliverdin (BV) as the chromophore. However, BV varies in concentration in different cells and organism...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 46 9  شماره 

صفحات  -

تاریخ انتشار 2014